Solar Tractors for Agriculture

Stephen Heckeroth

(707) 937-3385

steve@renewables.com

www.renewables.com

U.S. Per Person Barrels of Oil Equivalent Used (yearly)

Total Energy Consumed in US Farms in 2002 Total = 1.7 Quadrillion BTUs

(1.8 Exajoules)

Oil and food commodity prices, in lock step

Fossil Fuel Inputs for Global Ag Biz

10 units of fossil energy for = 1 unit of food energy

- 28% for the manufacture of fertilizer
- 20% for the operation of field machinery
- 10% for farm and wholesale transportation
- 11% for irrigation
- 9% processing
- 10% retail distribution
- 8% miscellaneous

100%

Fossil Fuel Inputs for Global Organic

8 units of fossil energy for = 1 unit of food energy

- 24% for the operation of field machinery
- 12% for farm and wholesale transportation
- 11% for irrigation
- 9% processing
- 12% retail distribution
- 12% miscellaneous

Fossil Inputs for Regional Organic

6 units of fossil energy for = 1 unit of food energy

- 24% for the operation of field machinery
- 8% for farm and wholesale transportation
- 11% for irrigation
- 8% processing
- 5% retail distribution
- 4% miscellaneous

Fossil Inputs for Local Organic

5 units of fossil energy for = 1 unit of food energy

- 24% for the operation of field machinery
- 5% for farm and wholesale transportation
- 8% for irrigation
- 6% processing
- 5% retail distribution
- 3% miscellaneous

Fossil Inputs for Local Permaculture

3 units of fossil energy for = 1 unit of food energy

- 5% for the operation of field machinery
- 5% for farm and wholesale transportation
- 6% for irrigation
- 6% processing
- 5% retail distribution
- 3% miscellaneous

Fossil Inputs for Labor Intensive

- 2 units of fossil energy for = 1 unit of food energy
- 3% for the operation of field machinery
- 5% for farm and wholesale transportation
- 3% for irrigation
- 2% processing
- 5% retail distribution
- 2% miscellaneous

Solar/Electric Small Farm

.01 units of fossil energy for = 1 unit of food energy

- 0% for the operation of field machinery
- 0% for farm and wholesale transportation
- 0% for irrigation
- 0% processing
- 0% retail distribution
- 1% miscellaneous

Solar Charged Electric Tractors

Batteries provide useful weight for traction

E- Porsche and E-Tractor '93

Built for Ford-New Holland '95

E-tractors Built in Ft. Bragg shop '94

Onboard inverter for mobile AC power

Scratch built with wheel motors and adjustable seat 1996

Scratch Built Crawlers 2008

Allis Chalmers "G" Electric Conversion Food beyond Oil with Solar Charged Electric Tractors

Exchangeable Battery Packs for Extended Range

Exchangeable pack mounted in the front to balance rear implement

Exchangeable pack mounted in the back to balance front loader

Drive Train Efficiency 20% 5% Loss **Combustion** 62% Mechanical **Drive Train Idling** 95% Gain 10% Work 8% 10% Regen 10%

ICE & Transmission

Electric Wheel Motor

Land Area and Water Needed to Fuel Farm Traction without Oil

Land

Water

40 Acre Horse Farm

* New Mexico Horse Council

20-80 Acres Pasture for 2 Horses

1-5 Acres Winter Feed

Over 300,000 gallons

40 Acre Bio-Fuel Farm

* Missouri Ag extension

10 Acres Soy Beans for 600 gal

30,000 gallons

40 Acre Solar/Electric Farm = .005 Acres of Barn Roof

No Water

SolTrac with Solar Charging Tractor Shed in the Background

Barn Roof Power Plants

My Homestead '93

The Mother Earth News 2006

Comparing Fossil Fuel with Solar Charging

Vehicle Type & Fuel Source

Combustion

Electric tractor & 1.5 kW PV

Liquid fuel used 300 hrs/yr for 25 yrs

Energy used 25 yrs

Fuel cost/hr

Fuel cost/yr

Fuel cost over 25 yrs \$10.00/gal, \$4/watt

CO₂/25 years

7,500 gals

250 MWh

\$10.00

\$3,000

\$75,000

100 tons

ZERO

60 MWh

\$0.80

\$240

\$6,000³

trace

Assumptions average next 25yrs: 1 gal/hr, \$10.00/gal, 30kWh/gal, 28#s CO₂/gal,

^{*}Current installed cost and performance for 1.5 kW PV w/ 25 year warrantee

10 million Small Farm Tractors in the US 600 hours/year for 25 years

Oil-combustion

At \$75,000/tractor X 10 M tractors

- = \$3,250 billion totalNo New JobsMoney Leaves theUS Economy
- + 1 billion tons of CO₂

Solar- electric

At \$6,000/tractor X 10 M-1.5kW PV

= \$60 billion totalMillions of New JobsMoney stays in theUS Economy

NO co₂

Assumptions average next 25yrs: 1 gal/hr, \$10.00/gal, 30kWh/gal, 28#s CO2/gal, *Current installed cost and performance for 1.5 kW PV w/ 25 year warrantee

Solar Energy Can Fuel Agriculture

35 Billion Terawatt hours (TWh) of Solar Energy Struck the Earth Over the Last 100 years

0.0005 Billion TWh of Oil has been burned Over the Last 100 years

6 hours of sunshine is equal to all the oil burned over the last 100 years

(the sun will keep on burning for 5.5 billion years)

(the oil will be gone in the next 30 years)

The real shortages we have are Innovation and common sense

Moving toward reliance on clean energy from the sun will stabilize the quality of essential resources and allow positive evolution

Heckeroth, 6-8-04

